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      Vibration Control in Bolt Action Rifles   

      Part I 

    By Jim Boatright 

Introduction 

The control of vibrations and recoil motions that arise during the firing of a rifle is of 

critical importance in delivering the bullet to the target accurately.  This article addresses 

the mechanical motions of the rifle and its component parts from the moment the sear 

breaks due to trigger pressure until the bullet exits the crown of the barrel and clears the 

muzzle blast shock wave.  The rifle is assumed to be in a fully supported, stationary, 

horizontal firing position as in benchrest competition.   While some of the ideas discussed 

here may have application to semi-automatic rifles or to rimfire rifles, the precision 

centerfire bolt action rifle is the primary subject of these discussions.  This article is the 

third in a series dealing with various aspects of designing and building “seriously 

accurate” bolt action rifles.  The section here in Part I on the vibration effects for standard 

rifle barrels upon bullet trajectories contains a modicum of “new work.”  Others have 

separately treated the “launch angle error” effect of barrel vibrations or the “cross-track 

velocity kick” effect as if either were the sole cause of the variations in group sizes and 

locations observed during barrel tuning, but here we show how they are actually 

inseparable and always occur together.  We cannot adequately deal with this topic 

without resorting to the use of some basic mathematics and physics.  No animals, nor 

math-averse humans, were injured in the production of this article.   

Even quite small lateral motions and variations in the pointing direction of the muzzle at 

the time the bullet exits the barrel will produce significant displacements of the bullet 

impacts on a distant target.  While there are many types of vibrations occurring in a rifle 

being fired, we will limit our concern here to transverse standing wave vibrations in a 

vertical plane affecting the muzzle of the rifle barrel.  We do this because these vibrations 

are the ones that seem most persistently to affect rifle accuracy.  Other types of vibrations 

are not addressed because either: 1) they cannot mechanically affect rifle accuracy,  2) 

with good rifle building and shooting techniques, they just do not seem to cause accuracy 

problems, or  3) they may be corrected simultaneously with the handling of the vertical 

plane vibrations.   

This topic of transient motions and vibrations could be addressed in a technical 

engineering sense, which would involve instrumenting the rifle to measure the effects and 

also modeling the vibrations using finite element analysis computer software.  The reader 

is specifically referred to Chapter #4 of the book, Rifle Accuracy Facts by the late 

Harold R. Vaughn, which is available from Precision Shooting, Incorporated, for an 

enlightening discussion of recoil motion and barrel vibration from an engineering 

standpoint.  In fact, most of the illustrations used in Part I of this article are taken from 

that book by permission of the publisher.  There is no real substitute for this technical 

approach of making theoretical predictions and making physical measurements that agree 

within the expected uncertainty for bringing new understanding to an engineering 

problem.  This approach to gaining new understanding of a problem is called the 

“scientific method.”   



 

Copyright © 2009 James A. Boatright 

 

2 

In contrast, these topics are addressed here in layman’s terms as far as possible and from 

the practical “cut-and-try” approach of gunsmithing and shooting rimfire and centerfire 

rifles for best accuracy or in benchrest competition.  The technical terms that must be 

introduced to discuss the topic are fully explained and illustrated by example.  So, instead 

of researching the topic of barrel vibrations and adding real knowledge to the field, we 

intend merely to present some rifle-building techniques that seem to enhance accuracy 

along with some hand-waving arguments about why we think they work.   

Readers wishing to repeat this learning experience for themselves in the most 

concentrated, efficient manner possible, are encouraged to undertake the converting of 

bolt action rimfire target rifles into competitive 7.5-pound “Sporter Class” or “10.5-

pound Benchrest Class” rifles for 50-yard benchrest competition.  One cannot accomplish 

this without learning a lot about both bench shooting technique and about the control of 

barrel vibrations.  With its relatively slow ignition process and longer barrel dwell time, 

the rimfire target rifle bullet is extremely sensitive to barrel vibrations that have had 

plenty of time to develop and to affect the muzzle long before the bullet clears the muzzle 

crown.  Of course, you may also learn that you want to stick with reloadable centerfire 

rifle chamberings henceforth and forevermore.   

Part I of this article contains some general information on mechanical vibrations, some 

specific information on how rifle barrels vibrate, and an introduction to the mathematics 

of the Simple Harmonic Motion of the barrel muzzle.  A new treatment is presented 

showing how muzzle vibrations affect the bullet’s trajectory to the distant target.  The fun 

stuff in Part II of this article includes a discussion of vibration sources in rifle shooting, 

how they can be managed in rifle design and construction, and a discussion of barrel 

tuners and how they work.   

A Few Notes on Mechanical Vibrations 

Mechanical systems can vibrate in many different ways.  A rifle barrel can and will 

vibrate simultaneously and independently in torsion about its bore, in longitudinal 

pressure waves (acoustical vibrations), and in lateral (transverse) displacement waves 

traveling back and forth along the barrel.  With its radial symmetry about its bore, the 

rifle barrel’s lateral vibration modes in a vertical plane and in a horizontal plane will tend 

to be strongly correlated with each other.  Furthermore, a single mechanical system can 

simultaneously and independently vibrate laterally in two or more modes of the same 

type of vibration.  These vibration modes correspond to different standing wave patterns 

and have different resonant frequencies that may, or may not, be harmonically related.   

We are only concerned here with vertical plane, transverse displacement waves for 

reasons that have been mentioned, but these vertical-plane, transverse waves will occur 

simultaneously in different and independent vibration modes.  The mechanical system 

vibrates as the sum of these independent and simultaneous vibration modes.  Transverse 

waves propagate along the barrel at high speed and at right angles to the displacements.   

Whenever a wave encounters a discontinuity in its propagating medium (like, for 

example, a step change in barrel diameter, an attached mass, or the end of the barrel), 

some portion of its energy will be reflected and some will generally continue onward 

with reduced amplitude and with a modified waveform.  The reflected wave may be in-

phase or phase-reversed, depending on the nature of the reflection.  The energy content of 
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a vibrating system at any instant in time is the sum of the kinetic and potential energies of 

all the parts of the system.  Each oscillating element of the system is continually 

swapping between kinetic and potential energy so that its sum is long-term, fairly stable.  

Friction losses gradually convert the wave energy into heat energy as the wave dissipates 

exponentially.  The kinetic energy content of a transverse vibrational wave is 

proportional both to the square of the frequency and to the square of the amplitude of 

those vibrations.   

Mechanical systems are excited into vibration by some type of driving force capable of 

displacing a portion of the system from its rest position.  Fortunately for us, the driving 

force must contain the resonant frequency of a given vibration mode in order to excite 

that vibration mode.  Unfortunately, however, the kinds of very sharp, short-duration 

driving forces (impulses) that occur in our rifles contain a wide spectrum of driving 

frequencies.  In fact, the shorter the time duration of the impulse, the broader the 

frequency spectrum it contains.  Much smaller long-duration oscillating driving forces 

(pumping forces) that match a resonant frequency of a mechanical system can build up 

quite large vibrations over time.   

A mechanical system, like our rifle barrel, “knows” its possible vibration modes and their 

corresponding frequencies even when it is quiescent.  If we could excite the barrel into 

any arbitrary vibration waveform, it would quickly settle into discrete frequency modes 

of vibration.  Even the very first, smallest responses of the barrel to any driving impulse 

are already in the discrete vibration modes that we will consider below.  Just try to impart 

arbitrary waveforms into a hand-held fly rod for example, and you will quickly find that 

only the same discrete modes keep recurring.   

The first five of these discrete, vertical-plane, transverse vibration modes which can be 

excited simultaneously and independently in our rifle barrels are shown schematically in 

Figure 4-25, taken from Chapter 4 of Harold Vaughn’s book.  The waveforms shown are 

textbook examples for an ideal cantilever beam, and the amplitudes are greatly 

exaggerated for clarity, but the frequency annotations are typical for a 24 inch hunting 

rifle barrel.  The resonant frequencies for these discrete vibration modes will all shift 

higher for shorter, stiffer barrels, or downward for longer, slender barrels.  Real 

cantilever beams, certainly including our rifle barrels, always differ to some extent from 

the ideal vibration modes by not being fixed with perfect rigidity at the left-hand end as 

shown in these diagrams.  Modes 1 (71 hertz) and 2 (445 hertz) do not occur in 

significant amplitudes because of being difficult to excite in a real barrel and because of 

very little driving energy being available at these low frequencies.  Mode 3 (1246 hertz) 

does occur in our rifle barrels and is the most significant vibration type discussed in the 

rest of this article.  Modes 4 (2429 hertz), 5 (4036 hertz), and higher order modes do 

occur in our rifles, but the amplitudes typically decrease by an order of magnitude, or 

more, for each mode number above Mode 3.  Mode 6 and higher vibration amplitudes 

would normally measure as a few millionths of an inch and are not usually of concern 

while lower numbered vibration modes are effectively “masking” them.   

Vibration Effects in a Standard Rifle Barrel   

The standard rifle barrel has its crown at the muzzle and has no muzzle attachment such 

as a muzzle brake or tuning device.  The effects of these attachments are discussed in the 
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last section of Part II of this article.  The vertical plane, transverse wave vibrations of the 

barrel produce significant and predictable effects in bullet impact locations on the target 

downrange.  Conversely, since we do not see similar horizontal, elliptical or diagonal 

effects in groups fired with a well-made rifle, we reckon that the other possible types of 

barrel vibrations are not occurring to a significant degree.   

The muzzle end of an ordinary rifle barrel, like any other point of the vibrating barrel, 

moves up and down in a fashion called “Simple Harmonic Motion” in physics.  This type 

of motion occurs whenever an object has a central, “neutral,” or rest position and is 

allowed to move freely in one dimension, subject only to a centripetal “restoring” force 

that is directly proportional to the amount of that object’s displacement (distance) from 

its central rest position.  The familiar clock pendulum exhibits approximately this kind of 

motion if it swings only through a small arc.  In the case of our rifle barrel the central rest 

position of the muzzle is its position and orientation with the rifle in its firing position 

(including “gravity droop” of the barrel) just prior to firing.  The free muzzle end of the 

barrel moves up and down with a sinusoidal motion in the vertical plane when the barrel 

system is excited into transverse “standing wave” vibration by vertical plane impulses 

arising during the firing process.  The recoil reaction force acting on the rear face of the 

recoil lug at the front of the receiver directly produces an upward bending moment on the 

rear of the barrel.  A standing wave is a stable type of transverse vibration that appears to 

be stationary along an extended linear object such as a guitar string or a rifle barrel.  It 

should be pointed out here that these standing waves along a rifle barrel are not actually 

true sinusoidal waveforms, but are more or less distorted sine waves.  This fact does not 

conflict in any way with the statement that the individual elements of the barrel are 

moving in true Simple Harmonic Motion (SHM).  As time marches onward, the vertical 

position of the muzzle itself, plotted against time, describes the well-known “sine wave” 

pattern of motion, which is exactly the mathematical solution to the “equation of motion” 

we just verbally described above for SHM.  The maximum displacement above or below 

the rest position is called the “amplitude” of the vibration, and may be about 0.001-inch, 

or less, for the muzzle of a typical rifle barrel.  From the handbooks, the velocity of 

propagation for these transverse vibrations in steel rifle barrels is about 3150 meters per 

second (or about 10,335 Feet per Second).   

The muzzle comes to a momentary stop at each maximum displacement point while it is 

reversing its direction.  The muzzle’s rate of motion, or speed in inches per second, 

describes another sine wave with its velocity peaks (maximum speeds of transverse 

motion) occurring at the same times as the zero crossings (original rest locations) in the 

position sine wave.  The sum of the positional (launch angle) effect and the vertical 

velocity (velocity kick) effect at the time of the bullet’s exit from the barrel crown 

produces the change in bullet impact point that we see on a distant target while tuning for 

best rifle/ammo accuracy.  As soon as the bullet has exited the barrel muzzle and the 

subsequent blast cloud, the bullet becomes a rapidly spinning “free body” that follows an 

unguided “ballistic trajectory” to the target subject only to aerodynamic forces and 

moments (chiefly atmospheric drag force) and to the acceleration of gravity.  Of course, 

not all of the aerodynamic forces may be knowable in the real world of an outdoor match, 

and the spinning bullet reacts similarly to the ways in which a toy gyroscope would react 

to the turning moments produced by these aerodynamic forces.  Aside from its spin 

characteristics and the above-mentioned drag and gravitational influences, the bullet’s 
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initial “state vector” [including its position, orientation, and velocity vectors at an instant 

in time after the bullet has exited the muzzle blast cloud] completely determines the 

bullet’s future trajectory and eventual target impact point.  Furthermore, barrel vibrations 

can affect the bullet’s state vector only through the launch angle and velocity effects 

mentioned above.  Accelerations and higher order effects all go to zero immediately after 

the bullet exits the barrel crown and clears the muzzle blast cloud.   

Therefore, we can see that the effects of vertical plane barrel vibrations on bullet impact 

point on the target can be analyzed (separated) into a displacement effect (that becomes a 

launch angle effect) and a velocity kick effect at the instant of bullet exit from the barrel 

crown.  These two effects will be treated separately and brought into the same units so 

that they can then be recombined.  This approach to studying a problem is called “the 

analytical method.”   

The Position Function   

Since most ordinary hunting rifle barrels predominantly vibrate in Mode 3 at about 1250-

hertz as shown both in Figure 4-25 and in Figure 4-28 in Harold Vaughn’s book, Rifle 

Accuracy Facts, we will use this vibration mode here in our explanatory example.  A 

barrel vibrating in Mode 3 will have its front node (stationary point) in the standing wave 

barrel vibration pattern about 10% of the barrel length back from the muzzle end, or 

about 2.4-inches back for our example 24-inch, normally tapered, hunting rifle barrel.  

This Mode 3 vibrational displacement of the muzzle (of usually less than 0.001-inch from 

the central rest position) effectively causes the free muzzle end of the barrel to pivot 

about the foremost barrel node and, therefore, to cause a variation in the pointing 

direction of the muzzle.  This pointing error significantly changes the launch trajectory of 

the bullet depending on just when in the vibration cycle the bullet exits the muzzle.  If, 

for example, the outer 2.4-inches of our barrel is pivoting up and down by 0.0005-inch 

each way at its distal end, this would mean bullets will be impacting at up to 0.716 

minutes of angle (MOA) above and below the aim point at any given target range due to 

this launch angle effect alone.  This maximum impact error distance is figured 

mathematically by: 

ERR=(60 MOA/Degree)*(180 Degrees/Pi Radians)*ArcTan(.0005/2.4) 

        =(3437.75 MOA/Radian) * {(.0005 inch/2.4 inches) Radians} 

        =0.7162 MOA   

The factor of 60 just converts degrees of angle into minutes of angle (MOA).  A minute 

of angle is one sixtieth of a degree of angle and happens to subtend (or cover) 1.0472 

inches at a distance of 100-yards.  Actually, for this situation, we can use the “small angle 

approximation” instead of the inverse-tangent function without loss of significant 

accuracy.  This approximation is that for small angular arguments (x), the Tan(x) and 

Sin(x) are about the same as x in radians.  There are 2*Pi radians per full circle of 360-

degrees.  The mathematical constant Pi is 3.141593… and is the ratio of the 

circumference of a circle to its diameter.  Note that a full circle contains 6283.185… 

milliradians (2*Pi*1000).  The milliradian is the inspiration for the “mil” of mil-dot 

ranging fame.  In fact, when we define the “mil” used in range estimating to be the small 
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angle subtended by a unit-dimension object as seen from a distance of 1000 units, we are 

using both the “small angle approximation” and the true “milliradian” defined above.   

Some experience in barrel tuning indicates that the size of this angular deviation probably 

runs from about 0.1 MOA for stiff target barrels up to about 2.0 MOA on each side of the 

neutral pointing direction for lighter hunting rifle or for longer antique military rifle 

barrels.  For many factory rifles the frequency of this Mode 3 standing wave barrel 

vibration will be around 1250 hertz (cycles per second).  This frequency happens to be 

about the highest excitation (vibration driving) frequency produced by the chamber 

pressure impulse that results from burning the powder in most centerfire cartridges.  This 

chamber pressure impulse is what accelerates the bullet down the bore and that 

acceleration, in turn, causes the barreled action to recoil rearward.  The rifle stock then 

exerts a recoil reaction force upon the recoil lug that, in turn, exerts an upward bending 

moment directly on the barrel shoulder in most rifle designs.  All of these actions occur 

with the timing as shown in Figure 2-16 of Rifle Accuracy Facts for typical Chamber 

Pressure versus Time curves.  The pressure impulse often has a half-period pulse width of 

about 0.400 milliseconds for its main peak.  All this is to show how our assumed Mode 3 

resonant frequency of 1250 hertz (with a period of 0.800 milliseconds) is likely to be 

excited into vibrating during firing.  Except perhaps for black powder cartridges, most 

target bullets spend between about 1.0 msec and 3.0 msec in the barrel after they start 

moving forward, and the bearing diameter portion of the bullet clears the muzzle during 

the last approximately 1% of that barrel dwell time.   

After the bullet exits the muzzle crown, a jet of high-pressure gasses follows behind it 

and quickly passes it up.  These hot gasses exit the barrel at 6000 FPS, more or less, 

depending on remaining gas pressure and temperature and on bore diameter and barrel 

length.  This rush of hot gasses continues to accelerate the bullet for a few inches and 

eventually forms a blast cloud surrounding the projectile.  This buffeting may destabilize 

some bullets, but there is no evidence that any redirecting of the muzzle blast gasses by 

the movement of the barrel muzzle has any systematic steering effect on the bullet.  After 

the bullet emerges from the blast cloud, it settles down into spin-stabilized aerodynamic 

flight to the target.   

We can now write the expression for the position function of the barrel muzzle as: 

 Pos(t) = A * Sin(W * t)   

where    A = Amplitude = 0.0005 inches (in this example) 

  W = Circular Frequency = 2 * Pi * 1250 radians/second. 

As discussed above, this variation in muzzle position at the time of bullet exit can be 

viewed as a variation in the launch angle of the bullet.  Assuming horizontal firing, the 

effect at the target of the variation in muzzle pointing can be expressed as: 

EP(t) =(3437.75 MOA/Radian)*ArcTan{(.0005 inch)/2.4 inches)} * Sin(W * t) 

Or, once again using the small angle approximation: 

  EP(t) = 0.7162 MOA * Sin(W * t). 
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This expression for the “launch angle effect” derived from the muzzle position function 

for this hypothetical barrel vibration will be combined with the velocity function effect 

developed below.   

The Velocity Function  

If the muzzle of our example rifle barrel is vibrating up and down in Simple Harmonic 

Motion through a total distance of about 0.001-inch (twice the displacement amplitude) 

in cycles of 0.800 msec in duration (as mentioned above), the amplitude of its velocity 

function would (mathematically) have to be 3.937 inches per second (ips).  We know this 

because the velocity function must be given by the time derivative of the position 

function (developed above).  If the crown of the barrel is located at the muzzle, the bullet 

will be given a small, cross-track velocity kick determined by this velocity function 

evaluated at the time (t) of bullet exit.  To evaluate the effect of this incremental vertical 

velocity kick on the bullet impact at the target, we can simply multiply it by the bullet’s 

time-of-flight to the target.  This evaluation approach implicitly assumes (not 

unreasonably) that the initial velocity kick stays constant over the bullet’s rather brief 

flight time to the target.  The time-of-flight for many target bullets (those with muzzle 

velocities just over 3000 FPS) to reach 100-yards is about 100 msec.  So, the velocity 

function alone would have an amplitude of 0.3937-inches at 100-yards (or 0.3750 MOA) 

in our assumed-typical example.  A more concise method of evaluating the angular effect 

(in MOA) of a transverse vertical “kick velocity” is to multiply 60 times the Arc-Tangent 

of the quantity, kick velocity divided by the average bullet speed to the target. The two 

velocities need to be in the same units, and the result of the Arc-Tangent function needs 

to be expressed in degrees.   

Note that the “average bullet speed to the target” term that we slipped in on the innocent 

reader indirectly implies a particular range to the target since real bullets are constantly 

slowing while in flight.  This slight range dependence grows only to 0.497 MOA at 1000-

yards for the example bullet being discussed.  [By the way, if we had gone off into a 

“Conservation of Angular Momentum” argument to evaluate the effects of this velocity 

function, we would have just taken longer to arrive at this same place.]   

The equations expressing what was just verbally described are: 

  Vel(t) = d/dt [Pos(t)] = d/dt [A * Sin(W * t)] 

             = A * W * Cos(W * t) = A * W * Sin(W * t + Pi/2) 

And, the effect at the target for our example of this velocity kick is given by: 

EV(t) = (3437.75 MOA/Radian)*ArcTan{(A*W)/(12*3000)}* Sin(W*t + Pi/2) 

where 

(12 inches/foot)*(3000 feet/second) = Average bullet velocity (assumed for this 

example) converted into inches per second to a range of 100 yards (the target 

range in this example). 

Using the small angle approximation once more, we have: 

  EV(t) = 0.3750 MOA * Sin(W * t + Pi/2). 
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Note how this velocity function amplitude magically agrees with the “kick velocity” 

multiplied by the bullet’s time-of-flight to the target.  This is called “prestidigitation.”   

The Combined Function 

Having been analyzed separately and with the results put into the same units (MOA), 

these two vibrational effects can now be recombined.  They always occur together, even 

if the velocity effect is much reduced via the use of a barrel tuner, as discussed in Part II 

of this article.  We have to sum two sinusoidal functions having the same periods, but 

differing amplitudes, and always being 90-degrees (or Pi/2 radians) out of phase with 

each other.  Saying the two waves are “90-degrees out of phase” just means that one sine 

wave is shifted by a time delay (0.200 msec in our example) corresponding to one quarter 

of a full cycle (360 degrees) with respect to the other.  The concept of “phase shift” 

implies that we are dealing with waves of the same frequency.  Oddly enough, the 

arithmetic (point-by-point) summing of two sine waves of the same frequency always 

produces a third sine wave of that same frequency, but with an amplitude and phase shift 

to be computed.  The sine wave plots shown in Graph 1 illustrate the summing of these 

two functions for our typical example case, which combines the two effects into the form 

in which we would actually encounter them in ammunition-versus-barrel tuning.  

For this example, we need to sum the two expressions below in order to re-combine the 

muzzle position and velocity effects in terms of bullet impact point at the target: 

  EP(t) = 0.716 MOA * Sin(W * t)   

EV(t) = 0.375 MOA * Sin(W * t + Pi/2) 

Now, these two sine waves can be summed mathematically as “phasors” since they differ 

only in amplitude and phase, but have the same frequencies.  This is an Electrical 

Engineering concept useful in dealing with AC power distribution and with AC 

machinery and is similar to vector addition in Physics, but it has nothing to do with the 

Star Trek TV series nor with futuristic weapons that can be set to “Stun.”  The polar plot 

shown in Graph 2 depicts the summing of these two phasors for this example such that:   

  Sum(t) =  0.8084 MOA * Sin(W * t + 0.4825 radians) 

The Sum(t) function is what we observe on targets at 100-yards (in this example) as we 

shoot 5-shot groups using small increments in powder charge between the groups (but 

correcting for variations in bullet drop due to changes in average muzzle velocity for each 

group) so as to slowly vary the time of bullet exit with respect to the muzzle vibration 

cycle.  This muzzle vibration cycle is assumed to occur the same way for each individual 

shot.  The calculated phase angle of 0.4825 radians corresponds to 27.6 degrees, which is 

closer to the launch angle (muzzle position) effect than to the velocity kick effect.  In this 

example, we would see the group centers sweep between plus 0.8084 MOA and minus 

0.8084 MOA (corrected for expected bullet drop variations) separated by 0.400 msec in 

bullet exit times (one half a vibration cycle at 1250 hertz or cycles per second).  We also 

expect to find the smaller group sizes at or near these extremes of the Sum(t) function.  

The large size of the change in muzzle velocity corresponding to a change of 0.400 msec 

in barrel dwell time is the reason that in tuning the ammo to the barrel the best accuracy 

usually occurs at “too slow” and “too fast” muzzle velocities.   
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To get away from our example and consider the case of any standard barrel, the sum 

function can be expressed more generally as: 

  Sum(t) = Mag * Sin(W *t + Phi)   

where  Mag = K * SQRT{(A/Ndis)**2 + (A * W/Vbar)**2}   

  Phi = ArcTan{W * Ndis/Vbar}   

  K = 60 * 180/Pi = 3437.75 MOA/radian   

Ndis = Nodal distance from muzzle in inches 

  Vbar = Average bullet velocity to target in inches per second 

  W = 2*Pi * Frequency(in hertz) = Circular Frequency (rad/sec)  

This expression for the Combined Function Sum(t) holds separately for any transverse 

barrel vibration mode of Mode 2 or higher.  The expression for the Phase Angle Phi 

shows that as the dominant frequency W increases, Phi approaches Pi/2 radians (or 90 

degrees).  Moreover, this shows why for stiffer barrels with higher vibrational 

frequencies, the velocity kick is the dominant vibration effect moving the bullets on the 

target.  This is probably why Harold Vaughn used the velocity kick effect in explaining 

barrel vibrations throughout his book.  Conversely, for a long thin barrel that vibrates 

with a lower resonant frequency (about 500 hertz), the variation in launch angle caused 

by muzzle vibrations is the dominant effect.  Hence, the early 1900’s British explanations 

of “compensation” in launch angle terms for their long-range SMLE rifles in .303 caliber.  

Actually, both effects were present together in each of these extreme cases.   

Figure 4-41 shows a graph of group height versus muzzle velocity plotted with bullet 

drop variations removed for an accurate 6mm PPC heavy varmint benchrest competition 

rifle.  This barrel has a residual 6.7Khz barrel vibration, and best accuracy is obtained 

either at just below 3100 FPS or at just over 3300 FPS.  The magnitude of the combined 

vibration functions is 0.2865 MOA as shown (0.300 inches).  In this case, the position 

function is only 0.1081 MOA while the dominant velocity function computes to 0.2653 

MOA, and the Sum(t) function is phase shifted by 67.8 degrees from the position 

function.  The amplitude of the barrel vibration producing these effects is 66 micro-

inches at the muzzle of this benchrest barrel.   

Figure 4-39 shows another plot of group impact height, with gravity drop corrected, for a 

heavy barreled 6mm BR rail gun fired at about as wide a range of muzzle velocities as is 

possible.  It shows a 9500 hertz residual barrel vibration effect attributable to its Sum(t) 

function.  The smaller groups were fired at a maximum point corresponding to 27.0 

grains of H322 powder and at a minimum point corresponding to 28.0 grains of H322.  

Back-figuring the Pos(t) and Vel(t) functions for this case indicates the Sum(t) function is 

at 71.5-degrees from the Pos(t) function which has a magnitude of only 0.04 MOA, while 

the Vel(t) function has a magnitude of 0.11 MOA for this accurate rail gun.  The 

vibration amplitude for this barrel muzzle is only 20 micro-inches at this high frequency.   

These few examples show that as the frequency of the residual vibration effect increases 

as in heavier barreled benchrest rifles, the velocity function tends to increasingly 

dominate the effects seen at the target.  These examples also show that what was said 

earlier about the very-small-amplitude, high-frequency vibration modes not being 
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significant, really applies only when these effects are being masked by much larger, 

lower-frequency barrel vibration modes.   

   End of Part I   


